

Subscriber access provided by ISTANBUL TEKNIK UNIV

Diterpene Fatty Acid Ester from Leucas nutans

Mashooda Hasan, Dadu Khan Burdi, and Vigar Uddin Ahmad

J. Nat. Prod., 1991, 54 (5), 1444-1446• DOI: 10.1021/np50077a041 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

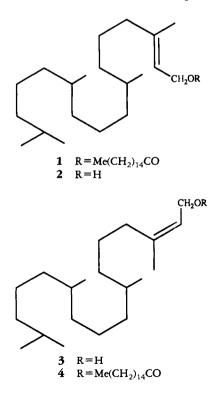
The permalink http://dx.doi.org/10.1021/np50077a041 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

DITERPENE FATTY ACID ESTER FROM LEUCAS NUTANS

Mashooda Hasan, Dadu Khan Burdi,¹


Department of Chemistry, Quaid-i-Azam University, Islamabad. Pakistan

and VIQAR UDDIN AHMAD*

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan

ABSTRACT.—A new diterpene fatty acid ester, *trans*-phytyl palmitate [1], has been isolated from *Leucas nutans* and characterized on the basis of chemical investigation and spectroscopic studies. *n*-Hentriacontane, 1-dotriacontanol, and phytol [2] were also isolated for the first time from this plant.

Different species of *Leucas* have been reported to possess interesting pharmacological properties (1,2). However, limited chemical work on the genus induced us to investigate the chemical constituents of *Leucas nutans* Spreng. (Syn. *Leucas decurva* Bth.). The plant belongs to the Labiatae family and is found in Pakistan and India (1). No work on the chemical constituents of this species

¹Permanent Address: Institute of Chemistry, University of Sindh, Jamshoro, Pakistan.

is reported in the literature. This paper describes the isolation of a new diterpene fatty acid ester which is characterized as *trans*-phytyl palmitate [1]. The plant also yielded *n*-hentriacontane, 1-dotriacontanol, and phytol [2].

Compound 1 was obtained as colorless waxy material. Its molecular formula was established as $C_{36}H_{70}O_2$ by its high resolution mass spectrum. The ir spectrum indicated the absorption of an ester group at 1713 and 1155 cm^{-1} . Its ¹H-nmr spectrum exhibited a triplet at δ 5.32 (J = 6.9 Hz) assigned to an olefinic proton and a doublet at δ 4.57 (J = 7.0 Hz) consistent with a methylene group adjacent to an ester oxygen. The other observed signals were a singlet at δ 1.68, representing a methyl group attached to a quaternary carbon, a doublet at $\delta 0.86 (J = 6.6 \text{ Hz})$ representing the four methyl groups attached to tertiary carbon atoms at positions 7, 11, 15, and 16, and a triplet at δ 0.87 (J = 6.7 Hz) due to the Me-16' protons. The ¹³C-nmr spectrum showed 36 carbon atoms. The DEPT experiments (3) revealed the presence of six methyl, four methine, and twenty-four methylene carbon atoms.

The structure of **1** was elucidated by comparison of its spectral data to those of phytol (4,5). The terpenoid moiety of the former seemed to be structurally related to the latter. The high resolution mass spectrum of **1** showed a fragment ion peak at m/z 239.2410 corresponding to a C₁₆H₃₁O moiety from the molecular ion. The other fragment ion peaks at m/z123.1194 (C₉H₁₅), 97.1014 (C₇H₁₃), 83.0846 (C₆H₁₁), and 81.0723 (C₆H₉) provided strong evidence for the long chain fatty acid attached to the phytol skeleton. The ¹³C-nmr spectrum of **1** (Table 1), which showed a downfield shift of the signal for C-1 as compared to the values of the relevant carbon for phytol (5), as well as signals for the palmitate moiety (6), also indicated the presence of phytol palmitate (Table 1). On alkaline hydrolysis, **1** yielded palmitic acid and the acyclic diterpene *trans*phytol (4,5).

TABLE 1. ¹³C-nmr Chemical Shift^a Data of Compounds 1 and 2.

Carbon		Compound	
		1	2
C-1	• •	61.22 122.63	59.47 123.18
C-2	• •	122.05	125.18
C-4	• •	39.88	39.90
C-4	•••	24.81	25.16
C-6	• •	37.04	36.69
C-7	• •	32.69	32.72
C-8	•••	37.46	37.39
C-9	•••	24.48	24.48
C-10	• •	38.20	37.46
C-11	• •	32.82	32.81
C-12	• •	37.32	37.32
C-13	•••	24.74	24.81
C-14	• •	39.40	39.40
C-15	• •	27.99	27.99
C-16		22.70	22.72
3-Me		16.37	16.18
7-Me		19.75	19.73
11-Me		19.82	19.76
15-Me		22.63	22.63
C-1'		173.42	-
C-2'		34.44	
C-3'		26.15	
C-4'-C-13'		29.19	
-		29.28	
		29.38	
		29.48	
		29.62	
C-14'		31.94	
C-15'		23.10	
С-16′		14.11	

^aChemical shifts are in ppm for TMS.

The identification of the hydrolyzed product as trans rather than the cis isomer of phytol is based on the published (4) ¹H-nmr spectra in which significant spectroscopic differences between these two isomers have been observed. The main difference lies with the 1-methylene group where the values of trans-phytol and cis-phytol [3] are reported as doublets at δ 4.05 and 4.48, respectively. The 1-methylene group of the hydrolysate from 1 appeared as a doublet (Table 2) at δ 4.14 (J = 6.9 Hz), which coincides with that of transphytol. The palmitate moiety was identified by gc-ms, thus establishing that 1is trans-phytyl palmitate. The isolation of 2 from L. nutans further supports the established structure. One of the researchers in our group has recently reported (7) a cis isomer of phytyl palmitate [4] from Pentatropis spiralis. However, a literature survey revealed that 1 is a new compound.

In addition to the above-mentioned diterpene fatty acid ester 1, several known compounds were isolated for the first time from the plant and identified through their spectral data as hentriacontane, 1-dotriacontanol, and phytol [2].

EXPERIMENTAL

PLANT MATERIAL.—Aerial parts of *L. nutans* were collected from Quaid-i-Azam University campus, Islamabad, Pakistan in the fall of 1988. A voucher specimen is deposited at the Herbarium of Department of Biology, Quaid-i-Azam University. The sample was dried in a cool, dark place and coarsely powdered.

EXPERIMENTAL PROCEDURES.—Spectra were recorded with the following instruments: ir, JASCO A-302 spectrophotometer; nmr, Bruker AM-400 MHz, operating at 400 MHz for ¹H-nmr and at 75 MHz for ¹³C-nmr; ms, Finnigan MAT-112S for eims and JEOL JMX HX-110 for hrms and gc-ms; tlc on Si gel PF₂₅₄; cc on Si gel 60. The spots were visualized with ceric sulphate reagent and iodine vapors.

ISOLATION AND IDENTIFICATION OF COM-POUNDS.—The EtOAc extract (220 g) obtained from partitioning of an EtOH extract was chromatographed on a column of silica and eluted

Carbon	Compound	
	2	3
C-1	4. $14 (d, J = 6.9 Hz, 2H)$ 5. $32 (t, J = 6.9 Hz, 1H)$ 1. $97 (m, 2H)$ 1. $66 (s, 3H)$ 0. $86 (d, J = 6.5 Hz, 12H)$	4.48 (d, J = 6.4 Hz, 2H) 5.33 (t, J = 6.4 Hz, 1H) 2.00 (m, 2H) 1.71 (s, 3H) 0.91 (d, J = 6.0 Hz, 12H)

TABLE 2. Comparison of ¹H-nmr Chemical Shifts⁴ and Coupling Constants for Compounds 2 and 3.

"Chemical shifts are in ppm from TMS.

with n-C₆H₁₄ using CHCl₃ as gradient. The fraction obtained by n-C₆H₁₄-CHCl₃ (17:3) was rechromatographed on a Si gel column. The eluate obtained in n-C6H14-Et2O (99:1) was evaporated and resulted in a waxy mass (0.065 g) which was further purified through preparative layer chromatography using n-C₆H₁₄-CHCl₃ (4:1) as mobile phase to yield 1: $[\alpha]^{22}D - 6.6^{\circ}$ (*c* = 0.24, CHCl₃); ir v max (CHCl₃) 2860, 1713, 1155 cm^{-1} ; hrms [M]⁺ 534.5425 (C₃₆H₇₀O₂), $[C_{20}H_{39}]^+$ 279.2992, $[C_{16}H_{32}O_2]^+$ 256.2463, $[C_{16}H_{31}O]^+$ 239.2410, $[C_9H_{15}]^+$ 123.1194, $[C_7H_{11}]^+$ $[C_7H_{13}]^+$ 97.1014, 95.0864, $[C_{5}H_{0}]^{+}$ 69.0702; ¹H-nmr (CDCl₃) δ 0.86 (12H, d, J = 6.6 Hz), 0.87 (3H, t, J = 6.7 Hz)H-16'), 1.68 (3H, br s), 1.98 (2H, m), 2.34 (2H, t, J = 7.4 Hz, H-2'), 4.57 (2H, d, J = 7.0)Hz, H-1), 5.32 (1H, t, J = 6.9 Hz, H-2). Found $[M]^+$ 534.5425; calcd for C₃₆H₇₀O₂, 534.5358.

ALKALINE HYDROLYSIS OF 1.—The ester 1 was hydrolyzed with alcoholic 5% NaOH. The hydrolysate was extracted with CHCl₃, washed with H₂O, and evaporated. The colorless viscous substance obtained was identified as 2: ms molecular ion m/z 296 (corresponds to C₂₀H₄₀O); ¹H-nmr (CDCl₃) δ 0.86 (12H, d, J = 6.5 Hz, H-7a, -11a, -15a, -16), 1.66 (3H, s, H-3a), 1.97 (2H, m, H-4), 4.14 (2H, d, J = 6.9, H-1), 5.40 (1H, t, J = 6.9 Hz, H-2).

METHYLATION OF PALMITIC ACID.—The aqueous layer was acidified with 5% HCl and extracted with H_2O . The organic layer was washed with H_2O and evaporated. The residue obtained was methylated with CH_2N_2 and found to be identical with palmitic acid methyl ester (8): gcms $[M]^+$ 270 ($C_{17}H_{34}O_2$), $[M-31]^+$ 239, $[M-43]^+$ 227, 227, 185, 157, 143, 129, 87, 74 (100%).

n-Hentriacontane (0.5 g) was obtained from the EtOAc extract fractions (preceding those from which **1** was eluted) using $n-C_6H_{14}$ as mobile

phase. 1-Dotriacontanol and **2** were obtained in mixture by subsequent elution of the EtOAc extract with n-C₆H₁₄-CHCl₃ (1:1). The mixture was resolved by flash cc; 1-dotriacontanol (0.007 g) was eluted with n-C₆H₁₄ and **2** (0.039 g) with n-C₆H₁₄-CHCl₃ (99:1). These compounds were identified by comparison of their spectroscopic data with those published (5,6,9,10).

ACKNOWLEDGMENTS

The authors thank the University Grants Commission, Pakistan, for financial support.

LITERATURE CITED

- B.N. Sastri, Ed., "The Wealth of India, Raw Materials," CSIR, New Delhi, 1962, Vol. IV, p. 80.
- S.B. Mahato and B.C. Pal, *Phytochemistry*, 25, 909 (1986).
- Atta-ur-Rahman, "Nuclear Magnetic Resonance: Basic Principles," Springer, New York, 1986, p. 227.
- J.S. James and A.P. Johns, *Phytochemistry*, 15, 1075 (1976).
- R.A. Goodman, E. Oldfield, and A. Allerhand, J. Am. Chem. Soc., 95, 7553 (1973).
- C.-N. Lin and W.-P. Tome, *Planta Med.*, 54, 223 (1988).
- N. Rasool, V.U. Ahmad, and A. Malik, *Phytochemistry*, **30**, 1331 (1991).
- S.R. Helles and G.W.A. Milne, Eds., "EPA/NIH Mass Spectral Data Base," National Bureau of Standards, U.S. Government Printing Office, Washington, 1978.
- I. Heilborn, R.F. Phipers, and H.R. Wright, J. Chem. Soc., 1573 (1934).
- F.N. Zufarov and Z.N. Nasirov, Farmatsiya, 24, 21 (1975); Chem. Abstr., 84, 86720d (1976).

Received 11 March 1991